Reed Muller Sensing Matrices and the LASSO
نویسندگان
چکیده
We construct two families of deterministic sensing matrices where the columns are obtained by exponentiating codewords in the quaternary Delsarte-Goethals code DG(m, r). This method of construction results in sensing matrices with low coherence and spectral norm. The first family, which we call Delsarte-Goethals frames, are 2 dimensional tight frames with redundancy 2. The second family, which we call Delsarte-Goethals sieves, are obtained by subsampling the column vectors in a Delsarte-Goethals frame. Different rows of a Delsarte-Goethals sieve may not be orthogonal, and we present an effective algorithm for identifying all pairs of non-orthogonal rows. The pairs turn out to be duplicate measurements and eliminating them leads to a tight frame. Experimental results suggest that all DG(m, r) sieves with m ≤ 15 and r ≥ 2 are tightframes; there are no duplicate rows. For both families of sensing matrices, we measure accuracy of reconstruction (statistical 0−1 loss) and complexity (average reconstruction time) as a function of the sparsity level k. Our results show that DG frames and sieves outperform random Gaussian matrices in terms of noiseless and noisy signal recovery using the LASSO.
منابع مشابه
Efficient Deterministic Compressed Sensing for Images with Chirps and Reed-muller Sequences∗
A recent approach to compressed sensing using deterministic sensing matrices formed from discrete frequency-modulated chirps or from Reed-Muller sequences is extended to support efficient deterministic reconstruction of signals that are less sparse than envisioned in the original work. In particular, this allows the application of this approach in imaging. The reconstruction algorithm developed...
متن کاملCompressed Neighbour Discovery using Sparse Kerdock Matrices
We study the network-wide neighbour discovery problem in wireless networks in which each node in a network must discovery the network interface addresses (NIAs) of its neighbour. We work within the rapid on-off division duplex framework proposed by Guo and Zhang in [5] in which all nodes are assigned different on-off signatures which allow them listen to the transmissions of neighbouring nodes ...
متن کاملRelationship between Haar and Reed-Muller spectral and functional domains
In this article, mutual relations between Haar and ReedMuller spectral and functional domains are presented. The new relations apply to any size of the transform matrices in the form of layered vertical and horizontal Kronecker matrices. They allow the direct conversions between Haar and Reed-Muller functions and their corresponding spectra.
متن کاملSteganography Scheme Based on Reed-Muller Code with Improving Payload and Ability to Retrieval of Destroyed Data for Digital Images
In this paper, a new steganography scheme with high embedding payload and good visual quality is presented. Before embedding process, secret information is encoded as block using Reed-Muller error correction code. After data encoding and embedding into the low-order bits of host image, modulus function is used to increase visual quality of stego image. Since the proposed method is able to embed...
متن کاملRemarks on Codes, Spectral Transforms, and Decision Diagrams
In this paper, we discuss definitions, features, and relationships of Reed-Muller transforms, Reed-Muller codes and their generalizations to multiple-valued cases, and Reed-Muller decision diagrams. The novelty in this primarily review paper resides in putting together these concepts in the same context and providing a uniform point of view to their definition in terms of a convolutionwise mult...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1004.4949 شماره
صفحات -
تاریخ انتشار 2010